Epsilon 24 résolu par perplexity

Epsilon 24 résolu par perplexity

Deux boules rouges et cinq boules blanches

Une urne contient deux boules rouges et cinq boules blanches. Deux joueurs Ali et Aloulou tirent tour à tour une boule de l’urne sans remise. Ali commence le premier. Quelle est la probabilité que Ali tire le premier une boule rouge ?

Perplexity a trouvé la bonne réponse !

Perplexity

To determine the probability that Ali is the first to draw a red ball, we need to consider the possible scenarios in which Ali draws a red ball before Aloulou does. Ali can win on his first, second, or third draw[1][2][3].

Here’s how we can break down the probabilities:

[latexpage]

  • Scenario 1: Ali wins on his first draw
    • Ali draws a red ball on his first turn.
    • Probability: $$P(R_1) = \frac{2}{7}$$ , where $$R_1$$ is the event that Ali draws a red ball on the first draw[1][2][3].
  • Scenario 2: Ali wins on his second draw
    • Ali draws a white ball on his first turn, Aloulou draws a white ball on his turn, and then Ali draws a red ball.
    • Probability: $$P(W_1 \cap W_2 \cap R_3) = \frac{5}{7} \cdot \frac{4}{6} \cdot \frac{2}{5} = \frac{40}{210}$$, where $$W_1$$ is the event that Ali draws a white ball on the first draw, $$W_2$$ is the event that Aloulou draws a white ball on the second draw, and $$R_3$$ is the event that Ali draws a red ball on the third draw[1][2][3].
  • Scenario 3: Ali wins on his third draw
    • Ali draws a white ball, Aloulou draws a white ball, Ali draws a white ball, Aloulou draws a white ball, then Ali draws a red ball.
    • Probability: $$P(W_1 \cap W_2 \cap W_3 \cap W_4 \cap R_5) = \frac{5}{7} \cdot \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} = \frac{120}{2520} = \frac{2}{42} = \frac{1}{21}$$[1][2][3].

Now, we add the probabilities of each scenario to find the total probability that Ali wins:

$$
P(\text{Ali wins}) = P(R_1) + P(W_1 \cap W_2 \cap R_3) + P(W_1 \cap W_2 \cap W_3 \cap W_4 \cap R_5)
$$

$$
P(\text{Ali wins}) = \frac{2}{7} + \frac{40}{210} + \frac{1}{21}
$$

To add these fractions, we need a common denominator, which is 210:

$$
P(\text{Ali wins}) = \frac{2 \cdot 30}{7 \cdot 30} + \frac{40}{210} + \frac{1 \cdot 10}{21 \cdot 10}
$$

$$
P(\text{Ali wins}) = \frac{60}{210} + \frac{40}{210} + \frac{10}{210} = \frac{110}{210} = \frac{11}{21}
$$

Therefore, the probability that Ali is the first to draw a red ball is $$\frac{11}{21}$$.

Citations:
[1] https://www.macformath.net/math/proba/probacond/exemple_probacond.pdf
[2] https://www.bac.org.tn/wp-content/document-bac/Serie-Bac/Technique/Mathematique/S%C3%A9rie%20dexercices%20-%20Math%20-%20Probabilit%C3%A9s%20-%20Bac%20Technique.pdf
[3] http://www.panamaths.net/Documents/Exercices/SolutionsHTML/19/PROBA00010.htm
[4] http://maths.desfontaines.free.fr/IMG/pdf/proba_2_ex_5.pdf
[5] http://maths.desfontaines.free.fr/IMG/pdf/proba_2_ex_4.pdf
[6] https://www.meilleurenmaths.com/images/misyl/terminaleS/ProgrammeOfficiel/probabilites/probabilites-conditionnelles-exercice-2.pdf
[7] https://www.superprof.fr/ressources/maths/maths-terminale-s/statistique-aleatoire-pourcentage.html
[8] https://www.bibmath.net/ressources/index.php?action=affiche&quoi=bde%2Fproba%2Fva2-vadiscretefinie&type=fexo


Réponse de Perplexity: https://www.perplexity.ai/search/une-urne-contient-deux-boules-ut16igb8RleGDAaDPAkHdw?utm_source=copy_output

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *