Exercices de probabilité et d'étude de fonction

epsilon.tn

May 2025

Exercice 1

On jette deux dés ayant la forme d'un tétraèdre régulier dont les faces sont numérotées de 1 à 4. On note X la somme des numéros obtenus.

- 1.a) Déterminer la loi de la probabilité de X.
- b) Représenter la loi de la probabilité de X.
- 2.a) Définir F la fonction de répartition de de X;
- b) Représenter F.

Exercice 2

Partie A

On considère la fonction définie sur $]0; +\infty[$ par : $g(x) = x - 3 + \ln x$.

- 1. Calculer les limites aux bornes de l'ensemble de définition de g.
- 2. a) On admet que g est dérivable sur $]0; +\infty[$, calculer g'(x).
 - b) Étudier le sens de variation de g(x) et dresser son tableau de variation.
- 3. a) Démontrer que l'équation g(x)=0 admet une unique solution α tel que : $2,20<\alpha<2,21.$
 - b) Démontrer que $\forall x \in]0; \alpha[, g(x) < 0 \text{ et } \forall x \in [\alpha; +\infty[, g(x) > 0.$

Partie B

Soit f une fonction définie sur $]0; +\infty[$ par $f(x) = \frac{2-2x}{x} + \frac{(x-1)}{x} \ln x$, de (C) dans un repère orthonormé (O,I,J) (Unité 2cm)

- 1. Calculer la limite de f en 0. Interpréter graphiquement le résultat.
- 2. Calculer la $\lim_{n\to+\infty} f(x)$ et $\lim_{n\to+\infty} \frac{f(x)}{n}$. Interpréter graphiquement le dernier résultat.
- 3. On admet que f est dérivable sur $]0; +\infty[$

- a) Calculer f'(x) et vérifier que $f'(x) = \frac{g(x)}{x^2}$ pour tout x appartenant $]0; +\infty[$.
- b) En déduire le sens de variation de f et dresser son tableau de variation