Suites de fonctions

Raouf Laroussi

November 2024

Exercice 1

Soit (f_n) la suite de fonctions définie sur [0,1] par :

$$f_n(x) = nx(1-x)^n$$

- 1. Montrer que (f_n) converge simplement vers une fonction f que l'on précisera.
- 2. Étudier la convergence uniforme de (f_n) sur [0,1]

Exercice 2

Soit (f_n) la suite de fonctions définie sur $\mathbb R$ par :

$$f_n(x) = \frac{\sin(nx)}{n}$$

- 1. Montrer que (f_n) converge simplement vers la fonction nulle sur \mathbb{R} .
- 2. Étudier la convergence uniforme de (f_n) sur \mathbb{R} .

Exercice 3

Soit (f_n) la suite de fonctions définie sur \mathbb{R} par :

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

- 1. Etudier la convergence simple de la suite (f_n) sur \mathbb{R} et donner sa limite f, si elle existe.
- 2. Étudier la convergence uniforme de (f_n) sur \mathbb{R} .
- 3. Étudier la convergence uniforme de (f_n) sur $[a, +\infty[$, où a > 0.
- 4. Calculer l'intégrale :

$$I_n = \int_0^a f_n(x) \, dx$$

5. Calculer : $\lim_{n\to\infty} I_n$ et comparer avec $I = \int_0^a f(x) dx$